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Abstract: The various rearrangements of the ligands of a generalized polyhedron are classified into modes and labeled group 
theoretically in terms of double cosets. A physical definition of a mode is given and shown to lead to a mathematical descrip­
tion which differs from previous ones. An ansatz is proposed such that the unimolecular rate constants for the various rear­
rangements depend in a simple manner on the mode to which they belong. The equations governing nmr line shapes are also 
considered and the various modes have been classified in terms of their distinguishability in nmr experiments. Comparisons 
are made with other approaches to a mathematical description of permutational isomerism. 

1. Introduction 

There has long been interest1 in rearrangements of the 
ligands on a molecular skeleton during a unimolecular 
isomerization process. In cases where there are a large num­
ber of ligands which may undergo rearrangement these con­
siderations become somewhat complex and approaches 
based on formal group theoretical labeling of isomers2 and 
"modes" of rearrangement3-8 have been discussed. 

In the present paper the various rearrangements of the 
ligands of a generalized polyhedron are classified into 
modes and labeled group theoretically in terms of double 
cosets. Section 2 of the manuscript reviews briefly the for­
mulation which Ruch and coworkers have employed for the 
labeling of permutational isomers. This formulation is then 
developed by appending some simple equilibrium applica­
tions. 

In section 3 the various rearrangements of the ligands are 
classified in terms of modes and the mathematical manner 
in which the modes are labeled by double cosets is de­
scribed. The formal definition of a mode of rearrangement 
which is presented differs from previous formal defini­
tions;5"7 however, it does agree with the examples given in 
most cases and in particular with those of Gielen and Van-
lautem3 and Musher.4 It is argued on physical grounds that 
the different modes should involve the various "symmetri­
cally similar" rearrangements as well as any additional 
rearrangements which are obtained by a rotation of the 
molecule as a whole. It is also considered important to em­
phasize the distinction between a rearrangement mode and 
a rearrangement mechanism or reaction pathway. 

In section 4 the physical argument in favor of the mode 
concept is completed by proposing an ansatz such that the 
rate constants for the various rearrangements depend in a 
simple way on the mode to which they belong. The kinetic 
equations governing the unimolecular isomerization pro­
cesses are developed both in terms of this ansatz and also in 

terms of the labeling system which is presented in sections 2 
and 3. The development of these kinetic equations is similar 
to that discussed by Brocas and Willem;8 however, it is 
much more general since it is not restricted to either the tri­
gonal bipyramidal or to equally energetic isomers. 

The equations governing nmr line shapes are considered 
in section 5 and the various modes are classified in terms of 
their distinguishability in nmr experiments. Some details of 
the theory of double cosets are presented in appendix A. 
Additional details regarding the kinetic equations of section 
4 are set forth in appendix B; a particularly simple form for 
these equations emerges in the "high-temperature limit." 
Finally, the application of the present formalism to the tri­
gonal bipyramidal and octahedral skeletal geometries is ex­
emplified in Appendices C and D, respectively. 

2. Permutational Isomers 

Permutational isomers1 are compounds which have in 
common the same molecular skeleton and set of ligands but 
differing in the relative distribution of ligands on the skele­
tal positions. The n skeletal positions are labeled by the in­
dices si, si, • • ., Sn and the n ligands by the indices l\, h, 
. . . / „ . A particular permutamer in which ligand /,• occupies 
skeletal position S/ is denoted by 

(l\= (hh---h\ (1) 
\s) \sxs2...sn) 

Different permutamers may be generated by permuting the 
ligand and/or skeletal indices. However, some permutations 
may yield experimentally indistinguishable structures. We 
let Rs denote the group of permutations on 5 indices which, 
independently of the ligand distribution, yields indistin­
guishable structures. The group Rs usually involves all 
proper rotations of the point group of the skeleton; any im­
proper rotations would also be included if the experiments 
considered do not distinguish chirality. If the experiments 
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considered have a characteristic time of measurement less 
than that corresponding to an internal motion (e.g., rota­
tion, inversion, or puckering), then the permutations repre­
senting such motions may also be included in R5. In the 
present discussion it will be assumed that R5 consists solely 
of the permutations corresponding to the proper rotations of 
the point group corresponding to the skeletal geometry. The 
symbol R1 denotes the group of permutations on /-indices 
which, independently of the skeleton, gives indistinguisha­
ble substances. For instance, in the complex ion 
[Co(NH3)4Cl2]+ R5 = Qh and R1 = S4 X S2 where S4 per­
mutes the four NH3 ligands and 52 permutes the two Cl -

ligands. One usually says that J?' permutes among identical 
ligands; however, the question of which is identical depends 
on the particular experiment; for instance, isotopes of the 
same element might be experimentally indistinguishable by, 
e.g., electronic spectroscopy, although distinguishable by 
nmr. 

It is obvious that the use of permutations on both ligand 
and skeletal indices is redundant. Thus we let Ri be the 
group of permutations on s indices which is isomorphic9 to 
R1. The rationale for this definition is seen on noting that 

" Q - n - a , - . ) - ' . - O <2> 
where P1 is a permutation acting on the /-indices and P/ the 
isomorphic permutation acting on the s indices. Sn denotes 
the symmetric group of all permutations acting on s indices. 
It is apparent that the permutamer R1QsP(I) is indistin­
guishable from P('s) for all R1G R', Qs G R5 and P G Sn. 
However, 

R1QsP[I) = QsPR' ([) = QsP(R1)-
1 ([) (3) 

Thus formally a single permutational isomer is defined2 to 
be a collection of all permutamers QsPRi ([) with Ri and Qs 
ranging over all the elements of Ri and R5. These sets, 
which label the permutational isomers 

BsPiB1 = {RsPiQuRs£Rs,Qi£Ri} (4) 
are termed (Rs,Ri) "double cosets." A selection of group 
theoretical properties of these double cosets is presented in 
appendix A. Thus, the symmetric group is a disjoint sum of 
double cosets 

Sn = ILEsPiBi (5) 
t 

where P, is a generator or representative of the i'th double 
coset. The number of permutational isomers is the same as 
the number of (Rs,Ri) double cosets, and methods for cal­
culating this number are available.2'10 

Next the double coset labeling system is developed by 
considering the equilibrium concentrations of the various 
permutational isomers. Thus, let [P] denote the concentra­
tion of the permutamer P(^) where (l

s) is a standard permu­
tamer. At equilibrium there exists a Boltzmann distribution 

[PV[Q] = e-EP'kT/e-EQ/kT (6) 

where Ep and EQ are the internal energies11 of the permu­
tamers, k is Boltzmann's constant, and T is the absolute 
temperature. Then, letting [/] denote the concentration of 
the permutational isomer associated with the /th double 
coset, R5PiRi, we have 

[i] Pe£sPi£,[P] U[Pj] M\ 

W] = E [P'\
 =

 UXP^]
 (7) 

where /,• is the number of isoenergetic permutamers in the 

/th double coset. The energy difference 

E, -E1. = kTln1-^ (8) 

involves not only the equilibrium concentrations but also 
the ratios /,//,' of the number of permutamers in each dou­
ble coset. Actually these ratios are well known although 
usually identified in a different manner. From appendix A 
it is seen that /,• is the order of Ri times the order of R5 di­
vided by the order of R5 (~) PiR1Pr1. Thus 

I1Zl1. = d,./d, (9) 

It should be noted that R5 (~) PiRiP,"'' is the point group of 
the permutamer P,('), as contrasted to Rs, the point group 
of the skeleton. Thus seeing that di is the order of the point 
group of the /th isomer, d/ is identified as the so-called sym­
metry number1' for that isomer. If eq 9 is substituted into 
eq 8 with the above interpretation of di the resulting formu­
la corresponds to the one given by Mayer and Mayer.12 

3. Permutational Isomerization 
It has been demonstrated that on applying a permutation 

P G Sn to one permutamer ({) a new permutamer, of possi­
bly a different isomer, is obtained. Thus these permutations 
might also be associated with permutational isomerization 
processes. Indeed, if P G Sn permutes skeletal index Si to Sj, 
then the corresponding rearrangement moves the ligand /, 
initially on Sj to position Sj, which was originally occupied 
by ligand /,-. Each rearrangement has one or more reaction 
pathways associated with it; for instance, for P = (ij), a 
transposition between nearest neighbor ligands, one path­
way might involve a simultaneous clockwise rotation by ir 
about an axis midway between the two equilibrium skeletal 
positions, while a second pathway might involve a similar 
counterclockwise rotation (Figure I). In general the num­
ber and accessibility of the various pathways depends upon 
the fine details of the potential hypersurface. Furthermore, 
upon application of P G Sn to the various permutamers in a 
given single isomer double coset it is seen that a number of 
permutamers belonging to several new isomers may result. 
That is, a single rearrangement PGSn can give rise to sev­
eral products even if there is only one reactant isomer. Thus 
in order to specify an explicit reaction mechanism one 
needs to know the reactant, the product, the type (or mode) 
of rearrangement, and the pathway which is consistent with 
that rearrangement. The utility of the concept of rearrange­
ment will depend ultimately on its physical separability 
from these closely associated items which together consti­
tute a reaction or reaction mechanism. 

Next a particular isomer, Io, is formally considered in 
which all positions have chemically identical ligands. (In 
the following paragraph it might be advantageous to imag­
ine the ligands on different sets of sites being physically, but 
not chemically, distinguishable, as perhaps with different 
isotopes.) Now two rearrangements are defined to be mode 
(or rate) equivalent if they have the same rate constant 
when applied to Io- A maximal set of mode-equivalent rear­
rangements is called a mode. Thus a maximal classification 
is achieved such that if two rearrangements of a general iso­
mer with the same skeleton as Io could possibly have the 
same rates, consistent with the skeletal symmetry, then they 
will occur in the same mode. 

In group-theoretically identifying the modes the skeletal 
point group is denoted by G. If G contains no improper 
rotations, then G = R5; while if G contains an improper 
rotation a, then G = R5 + aRs. Since the rearrangement 
G~lPG, with G GQ, P E S„~\s obtained by first rotating 
the ligands by G, second applying P, and third back rotat­
ing the ligands, it is seen that G-1PG and P are rate equiv-
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Present nomenclature 

(Rearrangement) 
mode with hindered 
rotation 

(Rearrangement) 
mode with free 
rotation 

Nmr-equivalent modes 

Gielen and 
Vanlautem3 

Undistinguishable 
permutations or 
chemical pro­
cesses 

Musher4 

Mode or 
rearrangement 

Observable 
process 

Hasselbarth and 
Ruch7 

Symmetry 
equivalent 
rearrangements 

Mode equivalent 
rearrangements 

Jesson, Meakin, 
Muetterties et alf 

Basic 
permutational 
set 

Collection of basic 
permutational 
sets 

Indistinguishable 
basic permuta­
tional sets 

Klemperer6 

Indistinguishable 
permutational 
isomerization 
reactions 

Nondifferentiable 
permutational 
isomerization 
reactions 

alent. That is if we trace out the direct pathways for P and 
G-1PG on two models of the skeleton, then the two tracings 
would look identical upon either an improper or a proper 
rotation. Furthermore, rotational motion of the molecule as 
a whole is often considered to have little effect on the chem­
ical properties. Here it is considered that the rotational mo­
tion of a molecule does not influence the rate constants for 
the rearrangements of a given mode, hence P and PRS with 
Rs G Rs are rate equivalent. If some rotational motion of 
the molecule were hindered, e.g., in a crystalline matrix, 
then different PRS could be associated with different rate 
constants, and only the subgroup of Rs corresponding to un­
hindered rotation would be used to relate mode-equivalent 
rearrangements. Here it is considered that all rotations are 
unhindered. Finally, rearrangements related by time rever­
sal symmetry will also be mode equivalent. Thus, P and 
P~x are mode equivalent. In general it is seen that P, 
G'1 PGRS, and G~]P~1GRS are contained in the same 
mode for all R3 £ Rs and G (EG. Now noting that 

QPQ-1R = QPS (10) 

is an expression in which Q and S range over R1 as Q and R 
do, it is apparent that each mode is a union of sets such as 
RsPRs- These sets are (RS,RS) double cosets. Explicitly then 
the formal specification of a mode is 

mode m - R11PnR3 + RsvPmcrlRs + R3P^1R3 + 

R3Pn-
1O-1R3 (11) 

where <x = 0 if the point group G contains no improper rota 
tions. If these double cosets are abbreviated to D 
Dfn, and Dafn, respectively, then 

Q cm. 

mode rn Dn + Dam (12) 

It is seen that each rearrangement mode may consist of 
several (Rs.Rs) double cosets. In general a mode will consist 
of 1, 2, or 4 double cosets. This last statement can be proved 
if it is noted that Rx is a normal subgroup of G. Then 

and 

D. 

Bm 

Dn-= 

D„. 

Ih 

oAR3 = RsO'1 (13) 

= OBmO-1 = 2„™, O * 0 

(14) 

D„ 

In addition it is seen that whenever there is equality among 
any of the double cosets in eq 12 that it must appear in pairs 
with never a lone triple. Of course, one takes Dam = D^m = 
0, if G contains no improper rotations, but the inequality 
Dn, ^ Dyn is still possible. 

The formal definition of a rearrangement mode which 
has been presented above is not exactly the same as previous 
analogous formal definitions.5"-7 The nomenclature is in 
general different with different authors3-7 and is reviewed 
and summarized in Table I. The present nomenclature is 

Figure 1. Two possible pathways for the same rearrangement P = (ij). 

the most similar to that of Musher4 and Hasselbarth and 
Ruch.7 

The reference isomer Io was introduced only in order to 
define a mode. The rearrangements of a particular mode 
may also be applied to other isomers with different numbers 
of different ligands, and in such cases the various rear­
rangements within the same mode may be associated with 
distinct rate constants. Nevertheless, it is still possible that 
only rearrangements from one mode are of importance and/ 
or that the rate constants for rearrangements within a single 
mode are simply related. The usefulness of the concept of a 
mode depends on the reflection in the experimental data of 
mode properties in a manner decoupled from the other con­
cepts which constitute a theory of a reaction mechanism. 

4. Kinetic Equations 

The rate constant which carries one permutamer P(l
s) to 

another permutamer Q('s) via the rearrangement QP~X is 
denoted Ic(P —- Q). Now the rate constants k(P —* Q) de­
pend in general not only on the rearrangement mode but 
also on the reactant and product. In order to delineate the 
potential utility of the concept of a mode it is proposed that 
the rate constant be factored into three portions 

HP-* Q) = kp.lQeaEP/kTe-bBQ/,,T (15) 

where the first factor kp-\Q depends only on the mode to 
which P~ 1Q belongs, the second factor is a Boltzmann-like 
term for the reactant, and the third factor is a Boltzmann-
like term for the product. Although this proposal is an as­
sumption it does have some reasonable characteristics 
which are now described. 

At equilibrium the ratio of the forward and reverse rate 
constants is given by 

ft(P — Q) _ [Q] 

HQ^p) -Jp] 
e<.Ep-BQ)/kT (16) 

and substitution of eq 15 into eq 16 gives 
a + b = 1 (17) 

The most reasonable choice for a and b is the symmetric 
one a = b = 1A. It should be noted that this ansatz for the 
rate constants now satisfies the detailed balance conditions 
of eq 16; this is of interest because this condition has not 
been a characteristic of previous (usually implied rather 
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than explicit) ansatze. In fact, previous considerations seem 
to have been based upon the implicit assumption that the 
rate constants are dependent only on the mode. 

The a = b = xk choice can be suggested by a plausibility 
argument based on absolute rate theory.13 In this theory the 
primary temperature dependence of k (P —- Q) results from 
the Boltzmann equilibration between the reactant and an 
activated transition state with energy £>*»gt. If it is as­
sumed that the transition state energy is a mode-dependent 
distance, EQP%-\, above the average of the reactant and 
product energies 

E*P~Q = E*op-i + V2(Ep + EQ) (18) 

then according to absolute rate theory the rate constants are 
given by 

{Ae-EQP-i/kT}eBP/2kT
e-

EQnkT (19) 

In this manner one obtains the a = b = \ ansatz, and the 
term in brackets in eq 19 is identified as the mode-depen­
dent factor kQp-t. This hypothesis does not seem unreason­
able to chemical intuition. Indeed, other hypotheses, such as 
the assumption that the transition state is a constant (mode-
dependent only) energy above the reactant state, are seen to 
be internally inconsistent since this could not be true for 
both the forward and reverse reactions (unless the reactant 
and product fortuitously possess equal energies). 

Assuming only unimolecular isomerizations the kinetic 
equations are now 

^ = - E (kQP-i)e^-EQ"»T[P} + 

Z kQ{-e^P-E<3P)/2kT[P] + e{BQ-IP-Sp*'2^[Q-1P]] 
QeSn (20) 

Recalling that the kQ are the same for all Q in the same 
(Rs.Rs) double coset, one obtains 

d i ^ = ^ ^ ! L £ {-e<Ep-BRpnSP>'**T[p] + 
<M m dm Rtses

s 

eiERPm-Up),2kT [RPn-
1SP]] (21) 

Next if it is assumed that P is in the (th (Rs,Ri) double 
coset (which labels the isomers) summation over the ele­
ments of this double coset yields 

u l m "m R, S, T^R3 Cg JS, 

l-{-eiEi-ERPmSTPU)/ikT[TPU] + 
"•I 

e<ERPm-isTPu -Eon»T [Rpm--LSTPU]} (22) 

If the symbols Dm and Z),- denote the sums over the elements 
in their respective (RS,RS) and (Rs,Ri) double cosets, it fol­
lows that 

SmBi = E(*'l™*)£i< (23) 
i' 

where the (i'\ mi) are scalars determined from the theory of 
double cosets. Then 

# = Z S km{-(i'\mi)e^i-Ei^2^[i] + 
i' m 

(i'\mi)e{Ef-Ei)/2kT[i'}} (24) 

it is noted that all [Q] in the same (Rs,Ri) double cosets are 
equal, since they simply represent the concentrations of dif­
ferent permutamers of the same isomer. 

The set of eq 24 represents the final form for describing 
the general case. The number of variable concentrations [/] 
appearing in eq 24 is in fact the number of isomers. General 
methods are available14 for solving such coupled kinetic 
equations, and this is discussed further in appendix B; also a 
high-temperature solution (i.e., when the differences of 
energies of the various isomers are essentially small com­
pared to kT) is obtained. It should be noted that the solu­
tions for different numbers of identical ligands can8 be re­
lated to one another. In particular cases the rate constants, 
km, for only one particular mode may be sufficiently large 
to warrant attention so that the m summation in eq 24 
could be truncated. Finally, it is apparent that each mode 
consists of 1, 2, or 4 (Rs,Rf) double cosets so that the km'S 
for different double cosets could be identical, within our an­
satz. 

5. Nmr-Equivalent Modes 

Frequently one finds ligands which are single atoms or 
ions which also have a nonzero nuclear spin. In such cases 
nmr spectra may be observed; however, the nmr lines may 
be broadened or coalesced if there is a sufficiently fast ex­
change among the like nuclei. Here like nuclei do not neces­
sarily have identical environments. Rather it is just the 
nmr-equivalent nuclei interrelated by elements of the full 
point group Ri (~] Rs which would have identical nmr spec­
tra. Only rearrangements permuting like nuclei among 
themselves are to be considered, since only these may take 
place sufficiently rapidly (~10~6 sec) with any likelihood 
of influencing the nmr line shapes. Thus it is seen that the 
rearrangements in the wth mode which should be consid­
ered are those in the set 

{mode m) fl R1 (25) 
Now the nmr line intensity at frequency v is given by15 

Iiy) ~ Zn(P-A-M) (26) 

where P and 1 are vectors and A is the Kubo-Sack matrix 
with the (a,b)\h matrix element given by 

Aab = -aabab + Y.\Pab
{m) - (1 - / ^ ( m ) ) 5 a 6 ] ( l / r J 

m 

(27) 

The only dependence of I(v) on the rearrangement (or ex­
change) of like nuclei arises in the lifetimes, rm, for a given 
mode m and in the pab^m\ which is the average fraction of 
sites with environment b changed into sites with environ­
ment a by rearrangements in the set in eq 25. Often it is an­
ticipated that only one mode is of importance so that the 
sum in eq 27 is restricted to that mode with the correspond­
ing Tm treated as a parameter. 

The pab^"^1 may be computed from a consideration of the 
appropriate double cosets. If y?eq denotes the group of per­
mutations among nmr-equivalent nuclei then double coset 
decomposition yields 

Ei = Z£ .q G n8 M (28) 
n 

where the Gn are double coset multipliers for the (Req,Req) 
double coset decomposition of Ri. Since Ri and Z?eq are 
both products of symmetric groups, each double coset 
ReqGnReq is uniquely labeled by a double coset symbol D", 
with the (a,b)th element (Dab") being the number of b sites 
changed to a sites by the elements of that double coset. (See 
appendix A.) It is then obvious that the rearrangements of 
the set 

{mode m} D ZLqGnR8, (29) 

are those rearrangements of mode m which interchange 
equivalent sites in accordance with the double coset symbol 
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EP. Furthermore, if lmn and lm represent the orders of eq 29 
and 25, respectively, and Na denotes the number of a sites, 
then the fraction of spins on b sites which are changed to a 
sites by the rearrangements in eq 29 is Dab

n/Nb, and the 
fraction of allowed rearrangements in mode m which have 
the double coset symbol D" is lmn/lm- Thus, the average 
fraction of b sites changed to a sites by the rearrangements 
of eq 25 is 

P06
 (m) =I^¥ (30) 

If two different modes give rise to the same p'm> matrix of 
eq 30, then an nmr experiment would not distinguish be­
tween these two modes of rearrangement. Such modes may 
be termed nmr equivalent and they are determined only by 
computing and comparing the p*m' matrices of eq 30. 

A different but related approach has been employed by 
Jesson, Meakin, Muetterties, et al.,5 and by Klemperer.6 In 
these other works the full molecular point group Ri H Rs of 
proper rotations is used to carry out double coset decompo­
sitions of Ri; these (Ri H Rs,Ri H Rs) double cosets are 
termed "collections of basic permutational sets" 5 or "non-
differentiable permutational isomerization reactions" 6 and 
they play a role analogous to the mode concept which is dis­
cussed here. For example, the actual molecular point group 
for (CH3)2NPF4 would be Civ, whereas the idealized skele­
tal point group used in the mode concept here would be D-^h-
Thus in these other works the elements of one of these col­
lections of basic permutational sets all possess identical rate 
constants, whereas the elements of a mode do not necessari­
ly do so. If the definition of a collection of basic permuta­
tional sets were extended to include the possibility of inverse 
and inverted double cosets (similar to those in the mode de­
scription of eq 11) and if Req is equal to R/ H Rs, then this 
extended collection of basic permutational sets would be 
given by eq 29. In general, however, Req D Ri D Rs, so 
that the set of eq 29 will be at least as large as a collection 
of basic permutational sets. 

6. Conclusion 
The concept of a permutational isomerization process has 

been discussed with emphasis on the mode concept of 
Musher.4 Its potential utility especially with regard to rate 
constant ansatze, as in section 4, has been argued to be an 
integral part of the mode concept. Indeed these ansatze are 
here viewed to be necessary for a complete and useful mode 
concept. The labeling of both isomers and modes in a group 
theoretical manner has been indicated and used. Finally an 
attempt has been made to indicate the nature of the as­
sumptions which are introduced and the reasons for making 
them. 
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Appendices 
A. Theory of Double Cosets. Consider a group G with two 

subgroups H and K. Then the (H,K) double cosets of G are 

HGK = [HGK; H E H, K E K} (A.1) 

It is shown in standard group theory texts that these double 
cosets (DCs) are disjoint and that G is uniquely decom­
posed into 

G = ^HG3K (A.2) 
i 

where q labels the distinct DCs and Gq is an arbitrary ele­

ment from the ^th double coset. Furthermore, if h, k, and 
dq are the orders of the sets H, K, and H (~\ GqKGq~

l, then 
the order of the DC HG9K is" 

h = hk/dv (A.3) 
If Dr, Dq, and Dq' represent the group algebraic sums over 
the (Ir, Iq, and lg>) elements in the DCs HGrH, HGqK, and 
HGqK, then 

DrDq = Z(?'k<7)ZV (A.4) 

where the scalar coefficients (^rq) are given by15 

(q'\rq) = hd„,/drdQ = \GrHGq D HGq,K | (A.5) 

These coefficients also appear in using dc matrices D? with 
matrix elements 

D11" = Z U A ) I c ^ n GCjK I (A.6) 
G£HGqK 

where C,- and C7- are left coset multipliers of H and K in G. 
These linearly independent DC matrices multiply thus16 

DTD' = J^(q'\rq)D"' (A.7) 

in close analogy to (A.4). Each DC matrix D^ for (H1H) 
DCs may be interpreted as an incidence matrix for a di­
rected DC graph, which also is in unique correspondence 
with the DCs. (These graphs may be used to yield topologi­
cal representations17 of the rearrangement mode associated 
with (Rs.Rs) DCs of section 3.) 

Next G is considered to be a permutation group on a set 
fi of indices. A subset A of Q is called a fixed block if 

GA = [Gx; GEG, x E A} E A (A.8) 

A minimal fixed block A is called an orbit. If (Aa/ a rang­
ing) and {IV b ranging) represent the orbits of H C Q and 
KQG, then a DC symbol W is defined by 

Dab
g = \Aa n G , r J (A .9) 

Different DC symbols must arise from different DCs. In 
addition18 if H and K are simple products of disjoint sym­
metric groups then each DC yields a unique DC symbol. 
More generally if H and K have normal subgroups / / ' and 
K' which are simple products of symmetric groups, then the 
(H',K') DC symbols correspond to unique disjoint collec­
tions of (H,K) DC symbols, such that all the DC symbols in 
one such collection differ only in the permutation of rows 
and columns. Again if H and K are the first of these special 
cases then 

dQ = nn(D„«!) (A.10) 
a b 

More generally in the second of these special cases if rtq rep­
resents the number of (H',K') DC symbols in the collection 
for the qth (H,K) DC, then" 

where h, h', k, and Ic' are the orders of H, H', K, and K' and 
any DC symbol in the collection is used in the product over 
a and b. Further (H,H) DC symbols may be interpreted as 
incidence matrices for a corresponding DC diagram. (These 
DC diagrams often are in close correspondence with the 
usual diagrammatic representations3"6 of the manner in 
which the related mode moves the ligands about in a com­
plex.) Such DC symbols may also be employed to carry out 
the multiplications of (A.5) or (A.7). 

B. Solving the Kinetic Equations. Consider first a general 
set of coupled first-order rate equations 

^ c 1 = XK11C, (B.i) 
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where 
K1,

 s k(j-

Ku 

i), i * J 

- X > ( i - * j ) 

This may be rewritten in matrix form 

(B .2) 

(B.3) 

Then14 this system of equations may be decoupled if K can 
be brought to diagonal form. However, since K is neither 
Hermitian nor normal, it is necessary to demonstrate that it 
can be diagonalized. To see this the following detailed bal­
ance conditions should be noted 

K11 _ k(j—i) 
K1 

e-Bj/kT (BA) 
Hi — j) 

i * j 
where in general the Ei are free energies. Then defining ma­
trices 

A1, - 6 , , S * ' " " 

KA = AKA"1 

it is apparent that 

Kif\._ A„*„A„-; KU^\ 1 

i * j 
hence, since K is real, it is seen KA is real symmetric. 

4;CA = ^1AC = AKA-1AC = KACA 

dt dt 

(B.5) 

(B.6) 

Then 

(B.7) 

where CA = AC is simply a rescaled concentration vector. 
Since KA is real symmetric, it has real eigenvalues and can 
be diagonalized by a unitary transformation, whereupon 
(B.7) can be decoupled and easily solved. 

Now for the present case of interest, i.e., for a = b = \ 
(as discussed in section 4) 

Kz
 A -'P1Q = kPQ-{ P * Q 

Kp p — Kp p — 2-^ RQP-1 
Q*P 

and the rescaled concentrations are 

{P} = eEp/2kT [P 

Then eq 20 takes the simple form 

d_ 
dt 

e(Ep-SQU2kT ( B > 8 ) 

(B.9) 

{P} = - Z kQP-ie^p-^^T{p} + Z fePQ-i{Q} 
QeSn QeSn 

(B.10) 

Equation 24 could similarly be simplified. In general the 
matrix KA is best diagonalized on a computer. 

In the high-temperature limit, however, KA may be facto-
rized extensively using group theory, and indeed in many 
cases the factorization may be complete. Noting the expan­
sions 

(B.ll) 
ers

a = £ Z [P-1Ir^P 
H- PeSn 

P = Z [Pls
aers

a 

ars 
where n\ is the order of the group Sn and [P]rs

a is the 

£ Z Z {P-'ISKP.QHQ} = 
n- PeSn Q 

l K l [P-1IZKp10[QlAIeJ] (B.12) 
Btu ^ n l P,Q I 

dt 

(r,s)th matrix element of the ath irreducible representation 
(of dimension/*) for the permutation P. Then substitution 
in (B.10) gives (B.12). 

It is now obvious that 

K* = Kr *-P, Q = "PQ-1A (B.13) 

at least for all P ^ Q. For P = Q it is noted that in the 
high-temperature limit 

Z kQP-i =-T,kR (B.14) K p, p 
Q*P 

so that (B. 13) is correct for P = Q in this limit. An approxi­
mation for Kp,pA which satisfies (B. 13) and which is valid 
at slightly lower temperatures is 

Kr T Z kQR-\e{ER-EQ)l2kT (B.15) 
l- Q,ReSn 

Hence assuming that (B. 13) is valid for all P and Q, the 
coefficient of {etu®\ in (B.12) became 

Sr X[P-1ISKpV-^[R-1P] 
P, R 

f 
n - w R 
T Z Z KRiS[R-i]tw> E [ P - 1 I l P ] J = 
! - p 

5 *B5SUT. K R1S[R-1Ir" (B.16) 

utilizing the orthogonality theorem for irreducible represen­
tations. The kinetic equations are, therefore 

£ k / } = Z ( Z Kp^[R-1IS)IeU0] (B.17) 

It should be noted that the equations with different values 
of as are decoupled; thus there is only a maximum of fa 

coupled equations. In general further decoupling may be 
achieved. To see this note that KR?i

A = KQ?\
A if R and Q 

are contained in the same (RS,RS) double coset. Then the 
coefficient of \ets

a\ in (B.17) is seen to be 

Z KQiS[Q-i]tr" 

i—~3~ 2_- KRP s < [(RPnS)' ]ts = 

Kpn 

^ Z Z [SlS[P^]J Z [RlS (B.18) 

Now if the irreducible representations of Sn are chosen to 
be symmetry adapted to Rs, then the matrix elements 
[R]tua are either 0 or a matrix element of an irreducible 
representation for Rs. Furthermore, the rows and columns 
of irreducible representations of Sn are labeled by the irre­
ducible representations of Rs. Also using the orthogonality 
theorem for irreducible representations of Rs, it is apparent 
that ^ReRs [R]tua is zero unless both t and u are associated 
with the identity irreducible representations of R5 Conse­
quently, letting p label the different rows of a of Sn labeled 
by the identity representation of Rs results in 

5W = I ( I V ^ ) W (B'19) 

C. The Trigonal Bipyramid. The vertices of the trigonal 
bipyramidal skeleton are labeled in the manner indicated in 
Figure 2. The skeletal point group for proper rotation is 

ES = s> (CD 
= {1, (345), (354), (12)(34), (12)(45), (12)(35)} 

The axial (A) and equatorial (E) ligands are identified as 
forming the two orbits (appendix A) of DT,. Thus the 
(Di.Di) double cosets in S$ will have DC symbols of the 
form 
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Table II. Trigonal Bipyramid Modes with Double Coset Symbol 
and Double Coset Representative 

Table i n . Octahedral Modes and Double Coset Symbols and 
Double Coset Representatives 

0+ 

0 - = (ad) 

2 Ol 
Q if G0+ = 1 identity 

2 0 
0 3[_ 

1 1 

Go- = (12) 

1 + = (aw) J \ * j + G1+ = (134) Jr' 

1 1 
1 - = (ae) i\ j _ G1- = (13) 

0 2 
2 + = (aeX«0 j 1 0^ = (13X24) 

0+ 

0 - = («) 

1 = (CC) 

2 + 

2 + + = (ccc) 

2 = (ccc) 

2 0 Ol 
0 2 0} Go+ = 1 

10 0 2J + 

2 0 0] 
0 2 0} Go- = (12) 
0 0 2 . 

[2 0 0] 
{0 1 1 
[0 1 1 

(13) 

1 1 0] 
0 1 1 } G2+4. = (135) 

fi iol 
{0 1 1 } G 2 - = (153) 
U 0 l L _ 

0 2 
2 - = (aeae) C 1 _ G*~ = <1 3 2 4) 

\ . 

Figure 2. Numbering convention for the trigonal bipyramid. 

uAA 

UBA 

D, 
(C2) 

with the sum of row A or column A being 2 ( the number of 
axial l igands) and the sum of row B or column B being 3 
( the number of equator ia l l igands). In the tr igonal bipyra­
mid case point group par i ty de termined by the correspon­
dence to proper or improper rotat ions, and permuta t ion par­
ity, de termined by the evenness or oddness of a pe rmuta ­
tion, a re the same. In addit ion since 

D. 3/i S2 x S3 = £ 3 + CT£3 (C.3) 

is a direct p roduc t of axial and equator ia l symmet r ic groups 
5*2 and S3 , these D C symbols are in unique correspondence 
with the {Qih.Q-hh) D C s , each of which decomposes into 
two (^3,.D3) D C s of different pari t ies. Thus the addit ional 
specification to be appended to the D C symbols to obtain 
un ique correspondence with the ( ^ 3 , ^ 3 ) D C s is then sim­
ply the par i ty label, + or —. T h e completed D C symbols a re 
given in Tab le II where also a D C representat ive and a di­
a g r a m of a representat ive r ea r r angemen t is shown. In this 
case each (Ri.R/) double coset forms an individual mode . 

D. The Octahedron. T h e vertices of the oc tahedra l skele­
ton a re labeled in the manne r indicated in F igure 3. Then 

2-{ 

1 1 0] 
2 + - = (ccKcc) {0 1 1 G2+- = (13X46) 

U 0 I j + . 

1 1 O] 
1 2 - + = (ccY.cc) {0 1 1 G2_+ = (15)(46) O-^C 
1 U 0 l | - + ^ ^ 

Figure 3. Numbering convention for the octahedron. 

the skeletal point group for proper rotat ions is 

Rs = Q 

= {1, (3645), (34)(56), (3546), 

(1324) , (12)(34), (1423), 

(1526), (12)(56), (1625), 

(136)(245), (163)(254), 

(135)(246), (153)(264), 

(146)(235), (164)(253), 

(145)(236), (154), (263), 

(12)(36)(45), (12)(35X46), (13)(24)(56), 

(16)(25)(34), (14)(23)(56), (15)(26)(34)} (D.1) 

In this case the entire set of sites forms an orbit, so it is nec­
essary to consider blocks which are not fixed. T h e pairs of 
opposite skeletal sites 

{ 1 , 2 } , {3, 4}, and {5 ,6} (D.2) 

form mutual ly conjugate blocks and may be used to con-
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struct DC symbols for the {0,0) D C s in S6. Again an 
extra specifying label is required in order to label uniquely 
each (O,O) DC. In the octahedral case permutation and 
point group parity are not in correspondence. However, 

Qh = (S2 x S2 x S2)S^* = Q + aO (D.3) 

where the £2 symmetric groups permute indices within the 
blocks of (D.2) and the S^* symmetric group permutes the 
blocks among themselves. Then the (Qh.Qh) D C s which are 
uniquely labeled by DC symbols each decompose into 1, 2, 
or 4 (Q,0) DCs ; for a particular DC, say OhGqOh, this de­
composition would depend on which, if any, of the sets 

QGaQ, OG11GO, QoGqO, and QoGqoO (DA) 

are distinct. Thus if all these four sets were equal, no extra 
specifying label would be appended; if all of these sets were 
distinct, the labels + + , H—, —(-, and — would be append­
ed; and, if there were just two distinct sets 

QGqO = QoG11OO and QGqoO = OoGqQ (D.5) 

then the labels + and — would be appended. The various 
DC symbols and DC representatives are indicated in Table 
III. 

It is to be noted that the D C s m = 2+4- and m = 2— 
are reflections, and inverses too, of one another; they thus 
form a single mode, denoted m = 2+. Also the D C s m — 
2-\— and m = 2—I- are reflections of one another, so that 
they too form a single mode, denoted m = 2—. Thus al­
though there are seven (O, O) D C s there are only five 
modes. 
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pare their electronic structure stability and properties with 
immonium CH2NH2+ . 

This large stabilizing effect of an NH2 group on carboni­
um ions has important conformational consequences and so 
the rotational barriers in immonium, amidinium, and guan­
idinium are of interest. 
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Abstract: Electronic structure calculations on NH2 carbonium ions, their neutral precursors, and related amines have been 
carried out in order to analyze more closely the unusual stabilizing property of NH2 groups on the electronic structure of 
ions. The rotational barriers in guanidinium, amidinium, and immonium are predicted as well as proton affinities of the im-
ines from which these carbonium ions are formed by protonation. The substituent stabilizing effects for carbonium ions are 
compared with those expected for carbanions and it is found that the BH2 group is the most effective at stabilizing a neigh­
boring carbanion center, with an NH2 group relatively ineffective. 
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